Difference between revisions of "MongoDB QueryData"

From mi-linux
Jump to navigationJump to search
 
(65 intermediate revisions by the same user not shown)
Line 7: Line 7:
 
The format is:
 
The format is:
  
<pre style="color: blue">
+
<pre style="color: purple">
 
  db.collectionName.find(optional_query_criteria)
 
  db.collectionName.find(optional_query_criteria)
 
</pre>
 
</pre>
  
 
Where the query_criteria follows a pattern:
 
Where the query_criteria follows a pattern:
 +
 +
<pre style="color: purple">
 +
db.collectionName.find({keyField: "value"})
 +
</pre>
 +
 +
Note:
 +
* the criteria is enclosed in curly brackets: {}
 +
* the value needs quotes if it is a string or date value
 +
* all names and values are case sensitive
 +
* quotes are optional for the fieldName, so long as they do not contain spaces
 +
 +
 +
=== Find all documents ===
 +
 +
For example, show all the data so far in the ''dept'' collection:
 +
db.dept.find()
 +
 +
The results should look like:
  
 
<pre style="color: blue">
 
<pre style="color: blue">
db.collectionName.find({"fieldName": "value"})
+
{ "_id" : 10, "deptno" : 10, "dname" : "ACCOUNTING", "loc" : "NEW YORK" }
 +
{ "_id" : 20, "deptno" : 20, "dname" : "RESEARCH", "loc" : "DALLAS" }
 +
{ "_id" : 40, "deptno" : 40, "dname" : "OPERATIONS", "loc" : "BOSTON" }
 +
{ "_id" : 50, "deptno" : 40, "dname" : "OPERATIONS V2", "loc" : "BOSTON" }
 +
{ "_id" : 30, "deptno" : 30, "dname" : "SALES", "loc" : "CHICAGO" }
 +
 
 
</pre>
 
</pre>
  
The fieldName must be in quotes, the value needs quotes if it is a string or date value.
+
To show the documents in the ''emp'' collection:
  
=== Find all documents ===
+
db.emp.find()
 +
 
 +
 
 +
The data comes back messy. The pretty() function can be used to improve the layout:
 +
 
 +
db.emp.find().pretty()
 +
 
 +
A subset of the ''emp'' collection is shown below:
 +
 
 +
<pre style="color: blue">
 +
> db.emp.find().pretty()
 +
{
 +
        "_id" : ObjectId("5a09e79ac536e890d5a7a666"),
 +
        "empno" : 7782,
 +
        "ename" : "CLARK",
 +
        "job" : "MANAGER",
 +
        "mgr" : 7839,
 +
        "hiredate" : ISODate("1989-06-09T00:00:00Z"),
 +
        "sal" : 2450,
 +
        "deptno" : 10
 +
}
 +
{
 +
        "_id" : ObjectId("5a09e79ac536e890d5a7a667"),
 +
        "empno" : 7839,
 +
        "ename" : "KING",
 +
        "job" : "PRESIDENT",
 +
        "hiredate" : ISODate("1980-11-17T00:00:00Z"),
 +
        "sal" : 5000,
 +
        "deptno" : 10
 +
}
 +
....
 +
 
 +
</pre>
  
For example, show all the data so far in the deptCollection:
+
Note the object ids are now system generated (and will be different values in your own data).
db.deptCollection.find()
 
  
The data comes back messy. The pretty() function can be used to improve the layout::
+
=== Find with query criteria ===
  
db.deptCollection.find().pretty()
 
  
=== Find One document ===
+
If working with a large collection, you will not want all the documents returned.
  
To find just one document - department 10:
+
Find all the employees are are clerks:
  
db.deptCollection.find({"deptno":10}).pretty()
+
  db.emp.find({job:"CLERK"})
  
Finding an employee means using the array name too:
+
For numerical data, the greater than (>) and less than (<) operators are represented by ''$gt'' and ''$lt'' respectively. Note, for these operators, the search criteria must be enclosed in {} brackets.
db.deptCollection.find({"employees.empno":7902}).pretty()
 
  
However, this does mean you get back all the employees in the department they were found in!
+
Find all employees who earn more than 2400:
 +
db.emp.find({sal: {$gt:2400}})
  
Since Version 2.2 MongoDB's new '''$elemMatch''' can be used with arrays to return only the '''first''' element matching the $elemMatch condition:
+
Find all employees whose commission is less than 1000:
 +
db.emp.find({comm: {$lt:1000}})
  
db.deptCollection.find({"deptno":20},
+
Working with the date field (hiredate) is more complex, since you have to create a new date for the comparison.  
  { _id: 0, employees: {$elemMatch: {empno: 7902}}}).pretty()
 
  
$elemMatch limits the contents of the employees array to contain only the first element matching the $elemMatch condition.
+
For example, find all employees who start after the 1st January 2000:
 +
db.emp.find({hiredate: {$lt: new Date("2000-01-01")}})
  
This is akin to a SQL query:
+
Find employees who started on the 16th October 2015:
 +
db.emp.find({hiredate: new Date("2015-10-16")})
  
<pre style="color: blue">
+
=== Find One document ===
SELECT * FROM Emp WHERE deptno=20 AND empno = 7902
 
</pre>
 
  
_id is a unique value automatically generated by MongoDB (like a Primary Key, except it is unique for the whole database).
+
To find just one document requires the use of the equivalent of a primary key field. This can be a field that the user takes responsibility to keep unique, such as the ''deptno'':
  
Using <b>_id:0</b> suppresses the value, however to see it:
+
db.dept.find({deptno:10})
  
db.deptCollection.find({"deptno":20}, 
 
  { employees: {$elemMatch: {empno: 7902}}}).pretty()
 
  
More about _ids in the next section.
+
Or the object id can be used, which will be unique:
  
== Find with Query Criteria ==
+
db.dept.find({_id:10})
  
The query criteria can be as complex as that found in SQL.
 
  
To find all employees earning more than 2000 in department 10:
+
In the ''emp'' collection, the _ids are system generated and generally along the lines of: '5a0727e99ba81dee9b1cc6a3', so less easy to use!
  
db.deptCollection.find({"deptno":10}, 
+
List all the records in emp:
  { employees: {$elemMatch: {sal: { $gt: 2000}}}}).pretty()
 
  
 +
db.emp.find().pretty()
  
Same again for department 20 and the managers:
+
and pick an _id from the collection and then try and find one record.  
db.deptCollection.find({"deptno":20},  { employees: {$elemMatch: {sal: { $gt: 2000}, job: "MANAGER"}}}).pretty()
 
  
 +
For example (note, your object id will be different):
  
'''employees''' is an array, so $elemMatch only returns the first matching value. What if we try this instead:
+
db.emp.find( {_id : ObjectId("5a0727e99ba81dee9b1cc6a3")}).pretty()
  
db.deptCollection.find({ "employees.sal" : { $gt: 2000}}).pretty()
 
  
Things to note:
+
The function ''ObjectId()'' must be used to convert the value into an object id.
* Comment on what the above query returns.
 
* If you examine the data carefully, if an element of an array is found to be true, then all the elements are returned, or one only. Is this good practice?
 
* An alternative design using objectIds can be seen in the next section.
 
  
 
== Next Step ==
 
== Next Step ==
  
[[MongoDB_Update|Updating]] the collection
+
[[MongoDB_Aggregate_Pipeline|MongoDB Aggregation]] Pipeline

Latest revision as of 14:13, 5 March 2018

Main Page >> MongoDB >>MongoDB Workbook >> Querying Collections

Querying a collection

The find() function can be used to query the documents.

The format is:

 db.collectionName.find(optional_query_criteria)

Where the query_criteria follows a pattern:

 db.collectionName.find({keyField: "value"})

Note:

  • the criteria is enclosed in curly brackets: {}
  • the value needs quotes if it is a string or date value
  • all names and values are case sensitive
  • quotes are optional for the fieldName, so long as they do not contain spaces


Find all documents

For example, show all the data so far in the dept collection:

db.dept.find()

The results should look like:

{ "_id" : 10, "deptno" : 10, "dname" : "ACCOUNTING", "loc" : "NEW YORK" }
{ "_id" : 20, "deptno" : 20, "dname" : "RESEARCH", "loc" : "DALLAS" }
{ "_id" : 40, "deptno" : 40, "dname" : "OPERATIONS", "loc" : "BOSTON" }
{ "_id" : 50, "deptno" : 40, "dname" : "OPERATIONS V2", "loc" : "BOSTON" }
{ "_id" : 30, "deptno" : 30, "dname" : "SALES", "loc" : "CHICAGO" }

To show the documents in the emp collection:

db.emp.find()


The data comes back messy. The pretty() function can be used to improve the layout:

db.emp.find().pretty()

A subset of the emp collection is shown below:

> db.emp.find().pretty()
{
        "_id" : ObjectId("5a09e79ac536e890d5a7a666"),
        "empno" : 7782,
        "ename" : "CLARK",
        "job" : "MANAGER",
        "mgr" : 7839,
        "hiredate" : ISODate("1989-06-09T00:00:00Z"),
        "sal" : 2450,
        "deptno" : 10
}
{
        "_id" : ObjectId("5a09e79ac536e890d5a7a667"),
        "empno" : 7839,
        "ename" : "KING",
        "job" : "PRESIDENT",
        "hiredate" : ISODate("1980-11-17T00:00:00Z"),
        "sal" : 5000,
        "deptno" : 10
}
....

Note the object ids are now system generated (and will be different values in your own data).

Find with query criteria

If working with a large collection, you will not want all the documents returned.

Find all the employees are are clerks:

 db.emp.find({job:"CLERK"})

For numerical data, the greater than (>) and less than (<) operators are represented by $gt and $lt respectively. Note, for these operators, the search criteria must be enclosed in {} brackets.

Find all employees who earn more than 2400:

db.emp.find({sal: {$gt:2400}})

Find all employees whose commission is less than 1000:

db.emp.find({comm: {$lt:1000}})

Working with the date field (hiredate) is more complex, since you have to create a new date for the comparison.

For example, find all employees who start after the 1st January 2000:

db.emp.find({hiredate: {$lt: new Date("2000-01-01")}})

Find employees who started on the 16th October 2015:

db.emp.find({hiredate: new Date("2015-10-16")})

Find One document

To find just one document requires the use of the equivalent of a primary key field. This can be a field that the user takes responsibility to keep unique, such as the deptno:

db.dept.find({deptno:10})


Or the object id can be used, which will be unique:

db.dept.find({_id:10})


In the emp collection, the _ids are system generated and generally along the lines of: '5a0727e99ba81dee9b1cc6a3', so less easy to use!

List all the records in emp:

db.emp.find().pretty()

and pick an _id from the collection and then try and find one record.

For example (note, your object id will be different):

db.emp.find( {_id : ObjectId("5a0727e99ba81dee9b1cc6a3")}).pretty()


The function ObjectId() must be used to convert the value into an object id.

Next Step

MongoDB Aggregation Pipeline